Spinor bosonic atoms in optical lattices: symmetry breaking and fractionalization.

نویسندگان

  • Eugene Demler
  • Fei Zhou
چکیده

We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic interactions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fractionalized phases of spinor Bose-Einstein condensates and discuss them in the language of Z2 lattice gauge theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultracold atoms in optical lattices: tunable quantum many-body systems

Cold atoms in optical lattices offer an exciting new laboratory where quantum many-body phenomena can be realized in a highly controlled way. They can even serve as quantum simulators for notoriously difficult problems like high-temperature superconductivity. This review is focussed on the recent developments and new results in multi-component systems. Fermionic atoms with SU(N) symmetry have e...

متن کامل

Bosonic topological crystalline insulators and anomalous symmetry fractionalization via the flux-fusion anomaly test

We introduce a method, dubbed the flux-fusion anomaly test, to detect certain anomalous symmetry fractionalization patterns in two-dimensional symmetry enriched topological (SET) phases. We focus on bosonic systems with Z2 topological order, and symmetry group of the form G = U(1)oG′, where G′ is an arbitrary group that may include spatial symmetries and/or time reversal. The anomalous fraction...

متن کامل

Quantum transport of bosonic cold atoms in double-well optical lattices

We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intraand inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) a...

متن کامل

Quantum many particle systems in ring-shaped optical lattices.

In the present work we demonstrate how to realize a 1D closed optical lattice experimentally, including a tunable boundary phase twist. The latter may induce "persistent currents" visible by studying the atoms' momentum distribution. We show how important phenomena in 1D physics can be studied by physical realization of systems of trapped atoms in ring-shaped optical lattices. A mixture of boso...

متن کامل

Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices.

Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 88 16  شماره 

صفحات  -

تاریخ انتشار 2002